Fourth Edition Invitation to Oceanography Paul R. Pinet

Chapter 7

Waves in the Ocean

© 2006 Jones and Bartlett Publishers

Waves are the undulatory motion of a water surface

- Parts of a wave are:
 - wave crest
 - wave trough
 - wave height (H)
 - wave amplitude
 - wave length (L)
 - wave period (T)

7-1 Properties of Ocean Waves

Wave classification

• Wave period provides a basis for classifying waves

TABLE 7-1	ABLE 7-1 Wave classification				
Wave	Period	Wavelength	Wave Type	Cause	
Capillary wave	<0.1 sec	<2 cm	Deep to shallow	Local winds	
Chop	1-10 sec	1–10 m	Deep to shallow	Local winds	
Swell	10-30 sec	Up to hundreds of m	Deep or shallow	Distant storm	
Seiche	10 min-10 hr	Up to hundreds of km	Shallow or intermediate	Wind, tsunami, tidal resonance	
Tsunami	10–60 min	Up to hundreds of km	Shallow or intermediate	Submarine disturbance	
Tide	12.4-24.8 hr	Thousands of km	Shallow	Gravitational attraction of sun and moon	
Internal wave	min to hr	Up to hundreds of m	Deep to shallow	Disturbance at pycnocline	

7-1 Properties of Ocean Waves

(a) CHAOTIC WAVES

(c) OCEAN BREAKERS

Waves and their Properties

Most of the waves present on the ocean's surface are wind-generated waves

- Size and type of wind-generated waves are controlled by:
 - wind velocity
 - wind duration
 - fetch
 - original state of the sea surface
- As wind velocity increases:
 - Wavelength
 - period
 - height

- increase, but only if wind duration and fetch are sufficient.

7-1 Properties of Ocean Waves

• A **fully developed** sea means the windgenerated waves are as large as they can be under current wind velocity and fetch.

• Significant wave height is the average of the highest 1/3 of the waves present.

- It is a good indicator of potential for:
 - wave damage to ships
 - erosion of shorelines

7-1 Properties of Ocean Waves

Progressive waves are waves that move across a surface

• As waves pass, wave form and wave energy move rapidly forward, but **not** the water.

Figure 7-2 Wave Motion

• Water molecules move in an **orbital** motion as the wave passes.

- Diameter of orbit:
 - increases with increasing wave size
 - decreases with depth below the water surface

The Motion of Water Particles Beneath Waves

Figure 7-3c Stokes Drift

7-2 Wave Motions

Figure 7-3a Wave Motion with Depth

Figure 7-3b Orbits of Water Particles

- Wave base is the depth to which a surface wave can move water.
- If the water is **deeper** than wave base:
 - orbits are circular
 - there is no interaction between the bottom and the wave
- If the water is **shallower** than wave base:
 - orbits are elliptical
 - Orbits become increasingly flattened towards the bottom

The Distortion of Water-Particle Orbits in Shallow Water

- There are three types of waves defined by water depth:
 - Deep-water wave
 - Intermediate-water wave
 - Shallow-water wave
- Celerity is the velocity of the wave form, not of the water.
- The celerity of a group of waves all traveling at the same speed in the same direction is **less than** the speed of individual waves within the group.

- Fetch is the area of contact between the wind and the water.
 - It is where wind-generated waves begin.
- Seas is the term applied to the sea state of the fetch when there is a chaotic jumble of new waves.
- Waves continue to grow until the sea is fully developed or becomes limited by fetch restriction or wind duration.

- Wave interference is the momentary interaction between waves as they pass through each other.
 Wave interference can be
 - constructive,
 - destructive,
 - or complex.

Figure 7-6b-d Wave interference

 Because celerity increases as wavelength increases, long waves travel faster than short waves.

• This causes dispersion outside of the fetch and regular ocean swell.

- The shallower the water, the greater the interaction between the wave and the bottom.
 - This alters the wave properties, eventually causing the wave to collapse.
- When depth decreases:
 - Wave speed decreases
 - Wavelength decreases
 - Wave height increases

• In shallow water:

 Troughs become flattened and the wave profile becomes extremely asymmetrical.

- Period remains unchanged.

• Period is a fundamental property of a wave.

 Refraction is the bending of a wave crest into an area where it travels more slowly.

Wave Transformation

Figure 7-7a Deep-Water Wave Transformations

Figure 7-7b Shallow-Water Waves in Profile

Wave steepness is a ratio of **wave height** divided by **wavelength** (H/L)

- In shallow water:
 - wave height increases
 - wave length decreases

 When H/L ≥ 1/7, the wave becomes unstable and breaks.

Figure 7-9a Spilling Breaker

There are Three Types of Breakers

Figure 7-9b Plunging Breaker

Figure 7-9c Surging Breaker

- **Storm surge** is the rise in sea level resulting from:
 - low atmospheric pressure
 - accumulation of water driven shoreward by storm winds
- Water is deeper at the shore area, allowing waves to progress farther inland.
- Storm surge is especially severe during a spring high tide.

Hurricane Damage

Figure 7-10a Storm Damage

Figure 7-10b Storm Surge Effect

1 .

(a) STORM DAMAGE

(b) STORM SURGE EFFECT

Standing waves or **seiches** consist of a water surface "seesawing" back and forth

A node is an imaginary line across the surface that experiences no change in elevation as the standing wave oscillates.
It is the line about which the surface oscillates.

- Antinodes are where there is maximum displacement of the surface as it oscillates.
 - They are usually located at the edge of the basin.

7-4 Standing Waves

Natural Period of Standing Waves

Figure 7-11 Natural Period of Standing Waves

7-4 Standing Waves

- Geometry of the basin controls the period of the standing wave.
 - A basin can be closed or open.
- Standing waves can be generated by storm surges.
- **Resonance** amplifies the displacement at the nodes.
 - It occurs when the period of the basin is similar to the period of the force producing the standing wave.

7-4 Standing Waves

Internal waves form within the water column along the pycnocline

- There is small density difference between the water masses above and below the pycnocline.
 - Therefore, properties of internal waves are different from surface waves.
 - They travel more slowly
 - They can be much larger
- Internal waves display all the properties of surface progressive waves including:
 - Reflection
 - Refraction
 - Interference
 - breaking, etc.

- Any disturbance to the pycnocline can generate internal waves, including:
 - flow of water related to the tides
 - flow of water masses past each other
 - storms
 - submarine landslides

Figure 7-12 Internal Waves

Tsunamis

- **Tsunamis** were previously called tidal waves, but are unrelated to tides.
- Tsunamis consist of a series of long-period waves characterized by:
 - very long wavelength (up to 100 km)
 - high speed (up to 760 km/hr) in the deep ocean
- Because of their large wavelength, tsunamis are shallowwater to intermediate-water waves as they travel across the ocean basin.
- They only become a danger when reaching coastal areas where wave height can reach 10 m.

Tsunamis originate from earthquakes, volcanic explosions, or submarine landslides.

On December 26, 2004, an earthquake with a magnitude of over 9.0 on the Richter scale triggered a **megatsunami** that affected coastlines throughout the Indian Ocean.

Figure 7-13a Generation of a Tsunami

(b) REFRACTION PATTERN OF 1979 TSUNAMI

