Oceanography

Chapter 9

Marine Ecology

Ocean Habitats

Figure 09.01a: Both the water column (the pelagic province) and the sea bottom (the benthic province) are divided into discrete zones.

Figure 09.01b: On the basis of light, the water column is separated into a three-part division.

Environmental Factors

in the marine environment, these include:

- Temperature
- Salinity
- Pressure
- Nutrients
- dissolved gases
- Currents
- Light
- suspended sediments (water clarity and food source)
- substrate (bottom material)
- river inflow
- tides
- waves

- Ecosystem is the <u>total</u> <u>environment</u> including:
 - biota (all living organisms)
 - non-living physical and chemical aspects
- **Temperature** can control aspects of an organism' s life:
 - Distribution
 - Degree of activity
 - Reproduction

Figure 09.11: Many organisms are not able to regulate their body temperatures, which therefore vary with the temperature of the surrounding water.

Phytoplankton and Water Temperature

Figure 09.12: Phytoplankton and water temperature. A comparison of SeaWifs images and NCEP sea-surface temperatures of ocean water near the Galapagos Islands taken on May 10, 1998, and May 25, 1998, shows a clear correlation of plankton abundances and cool water temperatures. Sea-surface temperatures range from warm (red) to cold (blue), plankton abundances from low (blue) to high (red).

Phytoplankton and Water Temperature

Figure 9-12a Phytoplankton

Figure 9-12b Sea Surface Temperature

9-4 Basic Ecology

Shellfish Harvest in Maine

Figure 09.13: The clam yield in Casco Bay, Maine, is inversely related to the mean annual sea-surface temperature (SST).

Salinity can control the distribution of organisms and force them to migrate in response to changes.

Figure 09.14a: Random molecular motion results in the movement of substances from points of high concentration to points of low concentration.

Figure 09.14b: Marine fish counteract the osmotic diffusion of water out of their cells in various ways.

Figure 09.14c: Freshwater fishes osmoregulate by not drinking water, urinating frequently, and absorbing salt ions through chloride cells in the gills.

Hydrostatic pressure is exerted by a column of water above an organism.

Figure 09.15a: On the average, hydrostatic pressure increases with water depth at a rate of about 1 atm per 10 meters of the water column.

Marine and Terrestrial Plants

- Plants on land are relatively large, multicellular, and rooted.
- They transfer nutrients and water to their leaves through a vascular system, generally from roots in the ground upward to the leaves.

- Marine plants are typically microscopic, unicellular, and free-floating.
- They absorb nutrients from seawater through their cell walls.

Figure 09.16: Plants on land are relatively large in size and transfer nutrients and water from the soil to their photosynthesizing leaves via an efficient vascular system.

Marine Plants

•Plankton include plants (phytoplankton) and animals (zooplankton).

•More than 90% of marine plants are algae.

•To photosynthesize (produce organic material from inorganic matter and sunlight) plants <u>must</u> remain within the **photic** zone.

- Settling rates depend on the plant's size and frictional drag.

Relative size	0		
Diameter (unit')	1	2	4
Area (unit²)	² =	$2^2 = 4$	4 ² = 16
Volume (unit ³)	³ =	2 ³ = 8	4 ³ = 64
Area Volume	$\frac{1}{1} = 1$	$\frac{4}{8} = \frac{1}{2}$	$\frac{16}{64} = \frac{1}{4}$
Conclusions	 Most area per unit volume Most drag per unit volume Slowest rate of settling 	←	Least area per unit volume Least drag per unit volume Fastest rate of settling

Figure 09.17: Marine plants must remain suspended in the photic zone in order to photosynthesize.

The morphology of fish has evolved to allow them to move through the water easily

- The fish's body must overcome three types of drag (resistance):
 - surface drag
 - form drag
 - turbulent drag

Figure 09.23a: Swimming efficiency in fishes is achieved by minimizing the drag created by friction, turbulence, and body form.

Aspect Ratio

•the ratio of the square of the caudal fin height to caudal fin area:

AR = (Caudal Fin Height)²/Caudal Fin Area

Figure 09.24: Fast-swimming fish possess caudal fins with high aspect ratios.

Classifying fish based on locomotion: Fin and body shape determine predation style

Figure 09.25: Fishes' mode of locomotion: each corner represents a distinct specialty (cruising, acceleration, maneuvering).

Vertical Zonation

Figure 09.27a: Along the rocky shorelines of the midlatitudes, the benthic biota may display a banded distribution termed vertical zonation.

Figure 09.27b: The upper boundary of each zone is related to the degree of tolerance to exposure to air.